Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 92(4): 716-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24666271

RESUMO

The liaIH operon of Bacillus subtilis is the main target of the envelope stress-inducible two-component system LiaRS. Here, we studied the localization, interaction and cellular dynamics of Lia proteins to gain insights into the physiological role of the Lia response. We demonstrate that LiaI serves as the membrane anchor for the phage-shock protein A homologue LiaH. Under non-inducing conditions, LiaI locates in highly motile membrane-associated foci, while LiaH is dispersed throughout the cytoplasm. Under stress conditions, both proteins are strongly induced and colocalize in numerous distinct static spots at the cytoplasmic membrane. This behaviour is independent of MreB and does also not correlate with the stalling of the cell wall biosynthesis machinery upon antibiotic inhibition. It can be induced by antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis, while compounds that inhibit the cytoplasmic or extracytoplasmic steps do not trigger this response. Taken together, our data are consistent with a model in which the Lia system scans the cytoplasmic membrane for envelope perturbations. Upon their detection, LiaS activates the cognate response regulator LiaR, which in turn strongly induces the liaIH operon. Simultaneously, LiaI recruits LiaH to the membrane, presumably to protect the envelope and counteract the antibiotic-induced damage.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Antibacterianos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Membrana Celular/química , Citoplasma/química , Ligação Proteica , Transdução de Sinais , Estresse Fisiológico
2.
Mol Microbiol ; 91(2): 348-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24261876

RESUMO

MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries.


Assuntos
Bacillus subtilis/metabolismo , Citoplasma/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Modelos Moleculares , Mutação , Peptidoglicano/genética , Transdução de Sinais
3.
J Vis Exp ; (63): e3982, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22588431

RESUMO

TIRF microscopy has emerged as a powerful imaging technology to study spatio-temporal dynamics of fluorescent molecules in vitro and in living cells. The optical phenomenon of total internal reflection occurs when light passes from a medium with high refractive index into a medium with low refractive index at an angle larger than a characteristic critical angle (i.e. closer to being parallel with the boundary). Although all light is reflected back under such conditions, an evanescent wave is created that propagates across and along the boundary, which decays exponentially with distance, and only penetrates sample areas that are 100-200 nm near the interface. In addition to providing superior axial resolution, the reduced excitation of out of focus fluorophores creates a very high signal to noise ratios and minimizes damaging effects of photobleaching. Being a widefield technique, TIRF also allows faster image acquisition than most scanning based confocal setups. At first glance, the low penetration depth of TIRF seems to be incompatible with imaging of bacterial and fungal cells, which are often surrounded by thick cell walls. On the contrary, we have found that the cell walls of yeast and bacterial cells actually improve the usability of TIRF and increase the range of observable structures. Many cellular processes can therefore be directly accessed by TIRF in small, single-cell microorganisms, which often offer powerful genetic manipulation techniques. This allows us to perform in vivo biochemistry experiments, where kinetics of protein interactions and activities can be directly assessed in living cells. We describe here the individual steps required to obtain high quality TIRF images for Saccharomyces cerevisiae or Bacillus subtilis cells. We point out various problems that can affect TIRF visualization of fluorescent probes in cells and illustrate the procedure with several application examples. Finally, we demonstrate how TIRF images can be further improved using established image restoration techniques.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Actinas/análise , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/ultraestrutura
4.
Science ; 333(6039): 225-8, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21636744

RESUMO

The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Parede Celular/ultraestrutura , Difusão , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Morfogênese , Movimento (Física) , Mutação , Polimerização , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
5.
FEMS Microbiol Lett ; 316(2): 90-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21208268

RESUMO

Heterocyst-forming cyanobacteria are important players at both evolutionary and ecological scales, but to date it has been difficult to establish their phylogenetic affiliations. We present data from a phylogenetic and molecular clock analysis of heterocystous cyanobacteria within the family Rivulariaceae, including the genera Calothrix, Rivularia, Gloeotrichia and Tolypothrix. The strains were isolated from distant geographic regions including fresh and brackish water bodies, microbial mats from beach rock, microbialites, pebble beaches, plus PCC strains 7103 and 7504. Phylogenetic inferences (distance, likelihood and Bayesian) suggested the monophyly of genera Calothrix and Rivularia. Molecular clock estimates indicate that Calothrix and Rivularia originated ∼1500 million years ago (MYA) ago and species date back to 400-300 MYA while Tolypothrix and Gloeotrichia are younger genera (600-400 MYA).


Assuntos
Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Microbiologia Ambiental , Evolução Molecular , Filogenia , Cianobactérias/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...